# set terminal canvas rounded size 600,400 enhanced fsize 10 lw 1.6 fontscale 1 name "bivariat_8" jsdir "." # set output 'bivariat.8.js' set key fixed right bottom vertical Right noreverse enhanced autotitle nobox set samples 500, 500 set style data lines set title "Finite summation of 10, 100, 1000 fourier coefficients" set xrange [ -10.0000 : 10.0000 ] noreverse nowriteback set yrange [ -0.400000 : 1.20000 ] noreverse nowriteback integral_f(x) = (x>0)?int1a(x,x/ceil(x/delta)):-int1b(x,-x/ceil(-x/delta)) int1a(x,d) = (x<=d*.1) ? 0 : (int1a(x-d,d)+(f(x-d)+4*f(x-d*.5)+f(x))*d/6.) int1b(x,d) = (x>=-d*.1) ? 0 : (int1b(x+d,d)+(f(x+d)+4*f(x+d*.5)+f(x))*d/6.) f(x)=sin(x-1)-.75*sin(2*x-1)+(x**2)/8-5 integral2_f(x,y) = (xy-d*.5) ? 0 : (int2(x+d,y,d) + (f(x)+4*f(x+d*.5)+f(x+d))*d/6.) ack(m,n) = (m == 0) ? n + 1 : (n == 0) ? ack(m-1,1) : ack(m-1,ack(m,n-1)) min(x,y) = (x < y) ? x : y max(x,y) = (x > y) ? x : y gcd(x,y) = gcd1(rnd(max(x,y)),rnd(min(x,y))) rnd(x) = int(x+0.5) gcd1(x,y) = (y == 0) ? x : gcd1(y, x - x/y * y) fourier(k, x) = sin(3./2*k)/k * 2./3*cos(k*x) sum10(x) = 1./2 + sum [k=1:10] fourier(k, x) sum100(x) = 1./2 + sum [k=1:100] fourier(k, x) sum1000(x) = 1./2 + sum [k=1:1000] fourier(k, x) delta = 0.2 GPFUN_integral_f = "integral_f(x) = (x>0)?int1a(x,x/ceil(x/delta)):-int1b(x,-x/ceil(-x/delta))" GPFUN_int1a = "int1a(x,d) = (x<=d*.1) ? 0 : (int1a(x-d,d)+(f(x-d)+4*f(x-d*.5)+f(x))*d/6.)" GPFUN_int1b = "int1b(x,d) = (x>=-d*.1) ? 0 : (int1b(x+d,d)+(f(x+d)+4*f(x+d*.5)+f(x))*d/6.)" GPFUN_integral2_f = "integral2_f(x,y) = (x