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Growing Crystals
It should be self-evident that in order to do crystallography one needs a crystal. So the first problem a protein crystal-
lographer faces is to persuade a protein to become crystalline. Sometimes this is an insoluble problem (pun intended).
Often the eventual success depends on cleverness in the molecular biology lab, where you can trim off recalcitrant bits
of the peptide chain or introduce selective point mutations to enhance solubility, stability, or the propensity to form a
crystal.

In principle the process of growing a crystal from a solution relies on a solubility phase diagram such as the one
shown here. The details of the phase diagram, including the shape and position of the colored areas above, will be
different for every protein. If the concentration of the protein is too dilute, it will stay in solution and not form a crystal
(lower left). If the concentration of the protein is too great, it will come out of solution, possibly as a crystal but more
likely as a poorly-ordered precipitate (upper right). Somewhere in between these two extremes is a region, perhaps a
very small region, of the phase diagram in which there is an equilibrium between protein molecules in solution and
protein molecules in a crystal lattice. The precise size, shape, and location of this region is strongly influenced by the
presence of other molecular species in the crystallization solution. Usually the search for crystallization conditions
consists of a search for suitable molecules (‘crystallizing agents‘ in the diagram) whose concentration can be varied
in order to shepherd the protein along a path through the phase diagram that takes successively through regions of
solution->nucleation->crystal growth (the growth stage is labeled ’metastable’ in the diagram). The path shown is
typical for a vapor equilibration protocol, ’hanging drop’ or ’sitting drop’. The initial condition in the drop is in the
blue region; as water leaves the drop the concentration of all components increases until nucleation begins to occur;
in the final segment of the path as shown, concentration of the crystallizing agent continues to increase as water vapor
leaves, but the protein concentration in solution goes down as the individual protein molecules leave solution to join
the growing crystal.

Crystallographic and Non-crystallographic Symmetry
A crystal is regular 2-dimensional or 3-dimensional array of identical Unit Cells. This array is called the Crystal
Lattice. The crystal lattice may, or may not, exhibit symmetry elements such as 2-fold, 3-fold, 4-fold, or 6-fold axes
of rotation. This is called the Crystallographic Symmetry. There are exactly 230 possible combinations of rotational
and translational symmetry that can exist in a 3-dimensional lattice. These are called Space Groups. Sometimes the
crystallographic symmetry is instead called Space Group Symmetry. The simplest case is when no symmetry is present
in the lattice beyond the pure translation that distinguishes one unit cell from its nearest neighbors. This is space group
P1.

All other space groups are more complicated. The figure below shows another simple, and very common, space
group called P21.It has one additional symmetry operation, consisting of a rotation by 180° and a simultaneous trans-
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lation vertically. (This is called a 2-fold screw axis, but you don’t need to worry about the naming conventions). As
shown in the figure, if we start with a single unique copy of the molecule this symmetry operation yields a second,
identical, copy elsewhere in the unit cell. In solving the crystal structure, we only need to model the one unique copy.
To be more precise: in space group P21each unit cell is subdivided into two identical volumes related by the 2-fold
screw axis symmetry operation. Since they are identical, we only need to determine the contents of one of these vol-
umes. This is called the Asymmetric Unit of the unit cell. In more complicated space groups there are more space
group symmetry operations, and the asymmetric unit is a smaller fraction of the unit cell.

The asymmetric unit itself may contain multiple copies of the crystallized molecule(s). This is called Non-
crystallographic Symmetry. In this case the crystallographer must choose whether to model these multiple copies
independently, or create only a single model and replicate it however many times is required. Another way of look-
ing at this is to say that the crystallographer must decide whether these multiple copies are identical to each other or
whether they are significantly different. If there are significant differences, then often the next question is whether the
differences are biologically relevant or merely an artifact of being packed into slightly different environments in the
unit cell. Generally if there is only low resolution X-ray diffraction data then it is safest to treat the copies as being
identical, since this is the simplest model and requires the least amount of data to refine. If high resolution data is avail-
able then it is usually possible to treat the copies independently from the start, and then compare the results afterward
to ask if there truly are any significant differences.

Figure 1: Mixture of crystallographic and non-crystallographic symmetry. A and B are related by noncrystallo-
graphic symmetry; C and C’ are related by crystallographic symmetry.

A final complication is that proteins often come in the form of dimers, trimers, or higher-order molecular assem-
blies. Thus the biologically active form of the protein may already exhibit internal symmetry. For example, a dimer
made up of two copies of the same subunit usually, although not always, contains an internal 2-fold axis. When this
dimer is crystallized, the two component subunits may or may not end up in the same asymmetric unit. If they do,
then the two subunits are related by non-crystallographic symmetry; as just described, the crystallographer can choose
to model them independently and compare them afterward. But it can also happen that this dimer will crystallize in a
space group containing a 2-fold axis as part of the space group symmetry. If the dimer positions itself in the unit cell
such that the internal 2-fold axis of the dimer is the same as the 2-fold axis of the crystal, then the asymmetric unit
will by definition only contain one half of the dimer (one subunit). Figure 1 contains an example of both cases. The
contents of the top half of the cell (grey background) are related to contents of the bottom half by a crystallographic
2-fold axis. Dimer AB is made up of two monomers which are crystallographically independent. The two halves are
not constrained to be identical (e.g. A might have a ligand bound while B does not) Dimer CC’ is made up of two
crystallographically identical halves. They are necessarily identical to each other.
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Bragg’s Law and the resolution of the experiment
When a crystal is illuminated by a beam of X-rays, the X-rays interact with every atom in the crystal (actually with the
electrons that belong to that atom). Since the nature of a crystal is that it is a regular repeating array of objects, whatever
interaction the X-rays have with a particular atom is repeated identically for each copy of that atom. Because of this
regular repeat, incoming X-ray that are diffracted by the atoms in one unit cell of the crystal interfere with X-rays that
are diffracted by the equivalent atoms in the next unit cell over, and the one after that, and so on. This interference
can either be constructive or destructive. We see a net outgoing (“reflected”) X-ray beam only at a well-defined set of
crystal orientations and illumination angles that result in constructive interference. This set of conditions is described
by Bragg’s Law.

Bragg’s Law nλ = 2dsin(θ)

Here λ is the wavelength of the X-rays, d is the distance between the planes of atoms defined by a particular set of
Bragg indices hkl, and θ is the incidence angle of the X-ray beam striking the planes. The spacing d is called the
resolution of that reflection. Reflections with larger values of h,k, and l define planes with closer spacing (smaller d).

Beware: relections with small d are called “high resolution”; reflections with large d are called “low resolution”.
This is confusing.

(a) Different sets of Bragg planes defined by the crystal lattice. Each plane
can be described by 2 indices (hk) for a 2-dimensional crystal as in the
figure, 3 indices (hkl) for a 3-dimenensional crystal.

(b) Bragg’s Law for a particular set of Bragg planes

The resolution of an X-ray data set is determined by the highest resolution reflections in contains. Ideally the data
set is complete, which means that all possible reflections with that resolution have been measured. The total number
of reflections in a complete data set is proportional to 1

d3 . This means that high resolution data sets contain a lot more
information. Incomplete data sets are sometimes described as having an effective resolution calculated based on the
number of reflection measured rather than on the resolution of the highest resolution reflection measured.

The intensity of diffracted X-rays drops at higher resolution both because the intrinsic scattering power of the
atoms decreases at larger values of θ and because the internal ordering of the crystal is not perfect. Those rare protein
crystal with near-perfect internal ordering may allow measurement of data to 1Å resolution or better. More typically the
diffracted intensities fall off to noise level somewhere in the range 2Å resolution to 10Å resolution. 2−3Å resolution
is “good”.
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X-ray crystallography is analogous to light microscopy

Microscope X-ray Crystallography

Ocular Lens

Objective Lens Diffraction by crystal

Light X-rays

The thing we
are looking at!

Computation
(Fourier Transform eq 3)

(Fourier Transform eq 1)

Fourier transform as “objective lens”
The overall scattering of light from an object can be described by a Fourier summation arising from the piecewise
contribution of scattering from all the individual “bits” of the object. In the case of X-ray diffraction, these bits are
electrons. If we knew the precise location of every electron, we could describe the overall scattering as a grand sum
over all of them. For the purposes of X-ray crystallography we will make two modifications to this description.

1. Because it is a crystal, instead of a single object there are many, evenly spaced copies of the object. The overall
scattering becomes discretized into individual reflections (Bragg’s Law). The regular 3-dimensional array of
Bragg reflections is by convention indexed by the subscripts h, k and l.

2. Although nature ’knows’ where each electron is, in practice we will approximate this by subdividing the unit
cell into little boxes, and describing how many electrons lie in each box. These boxes are by convention indexed
by x, y and z.

Disregarding a few constants and the imperfection of our crystal lattice, we can write our Fourier transform as

Fhkl = ∑
x

∑
y

∑
z

ρ(x,y,z)e2πi(hx+ky+lz) (1)

Fourier transform as “ocular lens”
In X-ray crystallography, a numerical computation substitutes for the function of the ocular lens in an optical micro-
scope. This Fourier transformation creates an image of the unit cell contents (an electron density map) starting from
our observed data (the thousands upon thousands of Bragg reflections). The basic formula used in this procedure is

ρ(x,y,z) =
1
V ∑

h
∑
k

∑
l

Fhkl e−2πi(hx+ky+lz) (2)

ρ(x,y,z) is again the electron density inside the little box of the unit cell with coordinates x, y, z. All the little boxes
taken together constitute a model for how the electron density in the whole unit cell is distributed.
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Smears instead of spheres - Since the electrons are associated with individual atoms, this means we should ideally
find 6 electrons worth of density at the location of each carbon atom in the cell, 8 electrons worth of density at the
location of each oxygen atom, and so on. Except in the case of very high-resolution data, however, each little box
generally contains contributions from multiple nearby atoms. So instead of seeing a nice little sphere for each atom
you see a smear.

The Phase Problem
The central problem in crystallography is the fact that the term Fhkl in Eq (1) and Eq (2) is a complex number. It has
both an amplitude |Fhkl | and a phase αhkl . So we could rewrite the Fourier transform in Eq. (2) as

ρ(x,y,z) =
1
V ∑

h
∑
k

∑
l
|Fhkl |eiαhkl e−2πi(hx+ky+lz) (3)

The amplitude is easy to get; it is the square root of the X-ray intensity we measured for the spot corresponding to
that Bragg reflection hitting the X-ray detector. The sticking point is that we have no measured value for the phase αhkl .
Crystallographers have a wide array of techniques to deal with the unfortunate fact that the phases are not measurable.
None of these are foolproof, and all of them are complicated, so we only summarize briefly the most common ones.

Molecular Replacement (MR)
The simplest technique to understand is called molecular replacement. It applies only to the case where we already have
a model for the protein structure, usually based on the structure of a homologous protein that was solved previously.
Fortunately, as more and more structures are solved and deposited in the PDB (Protein Data Bank) it becomes more
likely that a suitable starting point for molecular replacement can be found. The basic idea of MR is that we can evaluate
trial placements of the supposedly homologous structure into the current crystal unit cell, each time calculating both
the amplitudes and phases that would hypothetically be measured from the hypothetical crystal. If both the structural
homology and the selected orientation are sufficiently good, the calculated phases from the hypothetical crystal may
be good enough to use as approximate phases for the actual crystal.

In principle the starting model could come from something other than a previous crystal structure, e.g. an NMR
determination of structure in solution or an ab initio model of protein folding. In practice this almost never works. In
fact, successful use of a calculated model to do molecular replacement is a good benchmark for progress in the state of
the art in fold prediction.

The important point is that once we have an initial approximation for the phases, we can use Eq (3) to generate a
first-pass map of electron density throughout the unit cell. Of course if the initial approximation of the phases is bad,
then we get a bad map from applying Eq (3) even if our measured data set is quite good. We just have to hope that the
map is good enough to proceed with the task of building and refining a model of the unit cell contents.

As the model of the unit cell contents improves, we can use it to generate better approximate phases αcalc. These
in turn give a better map, which helps us to improve the model, which gives better phases, and so it goes. A schematic
of this iterative cycle is shown below.
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Direct Methods
“Direct Methods” refer to the inference of phase estimates directly from the measured data, without resort to a prior
structural model. These methods depend on probabilistic distributions of phase correlation between small subsets of
Bragg reflections. When the unit cell contains a small number of atoms, these joint probability distributions are sharp
enough to allow inference of the phase of a newly-considered reflection by examining the previously-assigned phases
for other reflections. In this way a small number of known, or assumed, starting phases can be bootstrapped to assign
phases to the rest of the data. In practice iterative phase inference is carried out many times, each time starting from a
set of randomly assigned phases for a small subset of the data. An external criterion, e.g. atomicity of the corresponding
electron density, is used to decide when one or more of the trials has succeeded.

The simplest example of such a joint phase distribution is Sayre’s Law, also known as the “triplet” relationship. It
states that if there are 3 strong Bragg reflections F−H , FK , and FH−K then the sum of their phases is approximately zero.

ϕ−H +ϕK +ϕH−K ≈ 0

A key extension of this relationship is the “tangent formula” introduced by Karle & Hauptman (1956). In this equation
the EK are normalized structure factors, basically a rescaled version of the observed amplitudes FK .

tan(ϕH)'
∑K EKEH−Ksin(ϕK +ϕH−K)

∑K EKEH−Kcos(ϕK +ϕH−K)

Direct methods have become the mainstay of small molecule crystallography. Sadly for crystallographers working
on larger structures, the underlying probability distributions become flatter as the number of atoms in the asymmetric
unit increases. Not only do the inferred phases become less accurate, the number of trial starting phase assignments
that would have to be considered becomes computationally intractable. So direct methods are not generally useful
for determining macromolecular structures from a single data set. Nevertheless, they can be crucial in overcoming
an initial hurdle presented by the techniques summarized below (SIR, MIR, SAD, that of locating a small number of
strongly scattering atoms mixed in with the hugely larger number of weakly scattering H/C/N/O atoms.

Isomorphous Replacement (SIR or MIR)
This method depends on measuring matched data from the original native crystal, and a single (SIR) or multiple
(MIR) derivative crystals. Each derivative crystal differs from the native crystal by the presence of additional metal
atoms, usually introduced by soaking the native crystal in buffer containing a suitable metal salt, e.g. PtCl4. Unfor-
tunately, soaking often destroys or distorts the original crystal. Even if the crystal survives the lattice may become
non-isomorphous, making it unusable for phasing.

Because each metal atom is very electron-dense it contributes strongly to the Bragg diffraction, changing the
relative amplitudes of the various Bragg reflections. The basic idea is that although we do not know the phases for
either the native or derivative Bragg reflections, we can use the difference in measured amplitudes to figure out where
the introduced metal atoms are. This is often done by direct methods applied to estimated amplitudes FH corresponding
to the scattering contribution of the introduced heavy atom[s] alone. This in turn allows calculation of approximate
starting phases from which we can start the iterative improvement process. [Note: The H in FH here and in the
figure below stands for “heavy atoms”, in contrast to FP where P stands for “protein atoms”. This nomenclature is
conventional, but it is confusing because in most other contexts FH is used instead as a short form of Fhkl]

(a) Isomorpous replacement depends on
adding metal atoms (usually by soaking) to
some consistent set of positions in the origi-
nal unit cell, without perturbing the original
contents.

(b) The net X-ray scattering present in a Bragg re-
flection is the sum of the scattering contributed by
each atom in the crystal’s unit cell. The total am-
plitude |Fhkl | and phase ϕhkl can be represented
as a vector FP lying in the Real/Imaginary plane.
This vector is the sum of constituent vectors rep-
resenting the scattering by each atom in the pro-
tein.

(c) If we add in a metal atom without perturbing
the original atomic positions, there is a new net
scattering vector FPH that is the sum of the orig-
inal protein scattering vector FP and the added
metal scattering vector FH . Electron-rich metal
atoms contribute very strongly to the total scatter-
ing; i.e. FH can be large.
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The figures below show geometrically how an estimate for the missing quantity ϕP , can be generated from the
original amplitude measurement FP from the native crystal, the amplitude measurements FPH1, FPH2, ... from one or
more derivative crystals, and an initial model we construct for the substructure consisting of only the added metal
atoms.

(d) Two possible ways that
the measured amplitude FP
and the estimated amplitude
FH can sum to the amplitude
FPH measured from a deriva-
tive crystal.

(e) The SIR case: one native measurement (blue cir-
cle with radius FP) and one derivative measurement
(magenta circle with radius FPH ). This representa-
tion was introduced by David Harker, and is known
as the “Harker construction”. The small vector in
center represents the correct amplitude FH and phase
for the metal atom[s] alone. The two possible values
for the phase of the protein atoms correspond to the
two intersections of the circles.

(f) The MIR case: additional data measured from
a different derivative crystal (green circle with ra-
dius FPH2) resolves the ambiguity in phase from SIR.
Only one of the original intersections is also an inter-
section for the new data.

So we have reduced the problem of finding phases for the native protein with the simpler problem of finding phases
for the N substructures consisting of only the metal atoms from each of N derivative crystals. Since the number of
metal atoms is usually small, this task is no harder than solving the structure of a small molecule.

Anomalous Scattering (SAD or MAD)
This method is conceptually similar to SIR/MIR, with the major difference that the “native” and “derivative” data can
be measured from the same crystal. Instead of modifying the Bragg diffraction by soaking in new metal atoms, we
experimentally manipulate the strength of scattering by existing metal atoms. Due to a phenomenon called anomalous
scattering, the scattering power of the metal changes as a function of the X-ray wavelength. The change is particularly
dramatic at specific wavelengths that are characteristic of the particular metal (see Figure below). Thus changing the
wavelength of the X-rays used in the experiment increases or decreases the contribution of the metals to the overall
scattering. Since not all proteins contain metals, the most common procedure of SAD or MAD phasing involves
substituting selenomethionine for the usual sulfur-containing methionine. The scattering power of Se varies sharply
near an X-ray wavelength of 0.97Å, which is very convenient for data collection. The use of anomalous scattering has
several advantages over isomorphous replacement. (1) The isomorphism is perfect (all data sets come from the same
crystal). (2) In the presence of anomalous scattering, Fhkl 6= F−h−k−l . This means that there are effectively twice as
many observations in each data set that contribute phase information. This is presented in more detail on my web site
http: // www. bmsc. washington. edu/ scatter .

7



Refinement and the R factor
How do we know that our model is improving as we work on it? Eq (1) gives predicted values of |Fhkl | in addition to
the phases. We can compare these predicted values, Fcalc, to the measured values, Fobs. The usual way of making this
comparison is to calculate the crystallographic residual R

R =
∑ ||Fobs|− |Fcalc||

∑ |Fobs|
(4)

The better our model agrees with reality, the better |Fcalc| agrees with |Fobs|, and hence the smaller the residual R
becomes. An approximate rule of thumb says that for a good, well-refined model, R reaches a value about 1/10 of the
resolution of the data. So a good 2.0 Angstrom structure may be expected to have R≤ 0.20, while a good 1.5 Angstrom
structure may be expected to have R ≤ 0.15.

Refinement and R f ree

A high value of R is always bad, but a low value of R does not guarantee that a structure model is good. R can be artifi-
cially lowered through the addition of unjustified parameters to the model. In any refinement (not just crystallography!)
the total number of parameters being refined should remain substantially less than the number of observations.1

How not to fit a model: The green line passes through all the data points, but is an unjustifiably complex model. The
blue line is a very simple linear model that is still a good fit to the data, though the fit is not perfect.

How to do it right: ”Cross validation” (also called a “jack-knife test”) is a sanity check on whether a model is too
complicated to be justified. It is performed by reserved a small fraction of the total data (~5%) and not using it to
construct or refine the model. After refinement, the ability of the model to explain this reserved set of observations is
tested. An over-complex model will generally fail to fit the reserved data as well simpler, but valid, model.

Crystallographers have occasionally gone astray by adding too many water molecules to the model (4 new param-
eters for each water molecule), by treating symmetry-equivalent protein models as being independent (doubling the
number of parameters used), or refining B factors for every atom when the data resolution is too low to support it.

To avoid this, it is best to do cross validation by omitting a small subset of the data from the refinement, and using
it only to calculate R f ree. This calculation is is exactly the same as the one for R4 except that it is a sum over the
reserved observations rather than the observations used for refinement. Any ’improvement’ of the model that does not
lower R f ree as well as R should be looked upon with great suspicion. A good structure report will give the final R f ree
in addition to the final R. There is no precise rule for what the final R f ree should be, but 0.05 < (R f ree−R) < 0.10 is
pretty typical for proteins.

1Properly speaking, the requirement is that the ratio #parameters
#observations+#restraints < 1. If this ratio ever gets larger than 1, the refinement is nonsense -

think about fitting a line (2 parameters) through a single point (1 observation).
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Error estimation
A full statistical treatment of the residual error in the refined model is an extremely large calculation, and is almost
never done when refining a protein structure. Instead people use one of several empirical formulae for estimating the
residual error. One of these is the Cruickshank DPI, Diffraction Precision Indicator, which gives an estimate for the
standard uncertainty (esd) of each coordinate parameter (x, y or z). Several variants of this empirical equation are in the
literature. The one below is appropriate for estimating the overall positional error of an ’average atom’ in the structure.

σ(r) =
√

3
[

#atoms
#obs

] 1
2

C−
1
3 R f reeDmin

where σ(r) is the overall uncertainty (e.s.d) in the x,y,z position, Dmin is the resolution of the data used in refinement
and C is the fractional completeness of the data set. Note that the estimated error gets smaller for lower values of
R f ree and for better resolution data. The estimated error becomes larger for low resolution data or for incomplete data
(C < 1.0). This variant of the DPI formula has the advantage that all the quantities needed to compute it are usually
reported in a protein structure paper!

It is important to note that any single number such as the DPI is only an estimate of the mean error for all the
parameters in the structure. Estimating the positional error for any particular atom requires a more complex calculation.

It is also important to note that this estimate only applies to atoms that are basically in the right place. It says
nothing at all about the possibility that someone has mistakenly placed an threonine residue where the protein really
has a valine, or incorrectly interpreted the connectivity (or even the direction!) of a poorly-ordered piece of the protein,
for example a flexible loop connecting two well-ordered α-helices.

Reality checks - is the model OK?
Single numbers like R can at best be a global measure of reliability. They are not sensitive to small errors, and do not
tell you if the model is better in one place than in another. Common sense, prior experience, and outside knowledge
of general chemistry should be brought to bear also. We now have thousands of examples of well-refined protein
structures, and this should lead us to be wary of a new structure that shows many odd bond lengths, torsion angles,
unsatisfied hydrogen-bond donors/acceptors, hydrophilic residues in a hydrophobic environment, and so on. One of
the oldest and best-known check of this sort is to plot the backbone torsion angles, ϕ and ψ, for each residue. This type
of plot was first done by G N Ramachandran, who found that steric hindrance limited most residues to certain regions
within the plot corresponding to regular secondary structure elements (figure below left).

Right figure: The Ramachandran plot for an individual well-refined structure. Each black dot represents the φ ,ψ
values for one residue. Triangles represent glycine residues, which are less constrained because they have no sidechain.
We expect to find that almost all of the residues from a well-refined structure lie in the core regions of the Ramachandran
plot. This percentage is often reported in the results section of a journal article, and it may be the only clue you get as
to the reliability of the structure other than the R factor.

Similar plots can be made of sidechain torsion angles, although these are rarely shown or reported in a journal
article.
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Key things to remember about X-ray diffraction
1. X-ray scattering is only sensitive to the position of electrons. The difference between an oxygen atom (8 elec-

trons) and a nitrogen atom (7 electrons) is small. On the other hand there is a dramatic difference in visibility
between Li+ and K+ despite their similar chemical properties. The local electron density at a particular position
in the unit cell is denoted ρ(x,y,z).

2. Bragg’s Law tells us that X-rays scattered by an ideal crystal will go off in a discrete set of directions. These are
called Bragg reflections, and are denoted Fhkl .

3. The resolution of an X-ray structure is determined by how many of the possible Bragg reflections are measured.
That means you know the resolution even before you solve the structure! The achievable resolution is usually
limited by the fact that the Bragg reflections get weaker as the scattering angle gets larger; eventually they cannot
be distinguished from the background noise.

4. One Fourier transform describes the scattering of X-rays by the crystal to produce a set of Bragg reflections.
This is Eq (1).

5. A second, closely related, Fourier transform describes how to reconstruct a model of the unit cell contents from
the Bragg intensities (which we have measured) and associated phases (which we unfortunately cannot measure).
This is Eq (3).

6. Every electron in the cell contributes to each Fhkl . Conversely, every Bragg reflection contains information about
the local electron density ρ at each position (x,y,z) in the unit cell.

7. Fhkl is a complex number. It has both an amplitude and a phase. Unfortunately, we can only measure the
amplitude.

8. Since we cannot measure the phases directly, we must start with an approximation for their values. Eq (3) then
gives an initial electron density map, often quite a bad map, into which we must build a model for the molecules
in the unit cell. As we refine the model, the calculated phases improve, which yields successively better maps.

9. Crystallography usually uses a single wavelength of X-rays, but for some experiments it is advantageous to use
X-rays with a range of wavelengths. Bragg’s Law still predicts a discrete diffraction pattern, but each wavelength
of X-rays will produce a corresponding set of Bragg reflections.
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Key things to remember about protein crystals
1. A crystal is regular 2-dimensional or 3-dimensional array of identical Unit Cells. This array is called the Crystal

Lattice.

2. The overall symmetry of the entire crystal is called the Space Group.

3. Depending on the space group, the unit cell consists of one or more copies of the Asymmetric Unit. Only one of
these is unique; the others are generated by the space group symmetry operations.

4. The core of a crystallographic structure determination is to locate and identify the atoms in one asymmetric unit.

5. There can be more than one copy of the protein in a single asymmetric unit. In this case crystallography gives
multiple views of the protein structure that may be compared with each other.

6. Conversely if the protein is a dimer (or trimer or higher-order assembly), then it can happen that only half (or a
third, etc) of the protein is in the asymmetric unit.

7. Roughly half of the unit cell is occupied by the protein. The rest of it is filled by the aqueous buffer from
which crystals were grown. Thus the protein’s local environment in the crystal is not so very different from the
environment in a living cell.
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Quality checklist
1. For a good model, the predicted values of Bragg reflections |Fcalc| agree well with the observed values |Fobs|.

This gives a low value of the crystallographic residual R (Eq 4).

2. A high value of R is always bad, but a low value of R does not guarantee that a structure model is good. A reality
check can be made if a small subset of the data is omitted from the refinement, and used only to calculate R f ree.
Typically a good protein structure will end up having 0.05 < (R f ree−R)< 0.10.

3. Rough rule-of-thumb: if there are more water molecules in the model than protein (or nucleic acid) residues then
you should be suspicious. At very high resolution (≤ 1.5Å) this rule may be relaxed, as there are many more
observations and at this resolution it is much easier to identify water molecules.

4. Missing data introduces noise into the electron density map, as the corresponding Bragg reflections are neces-
sarily left out of the Fourier summation. Rough rule-of-thumb: The overall completeness of the data measured
should be greater than 90%. Low resolution data and weak reflections should be included in refinement, because
even weak data is more informative than not having a measurement at all.

5. The model should not be too complicated for the number of observations. This is true for all experimental
science, not just crystallography. The number of Bragg reflections (observations) increases as the cube of the
resolution. A high resolution structure determination (better than, say, 2.5Å resolution) can support a more
complex model and more detailed conclusions than a low resolution experiment. Example of a model that may
be “too complicated”: a low resolution structure of a dodecamer in which each subunit is modeled separately is
12 times as complicated as a model in which all subunits are treated as having identical geometry.

6. The protein structure should be believable! For instance, it is very unusual for more than a small handful of
residues to lie outside the core regions of a Ramachandran (ϕ/ψ) plot. The structure should also make biological
sense. It should explain, or at least not contradict, previous experimental work such as the effect of mutations or
the specificity for particular substrates, inhibitors, or binding partners.
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