References for Wim Hol Research Summary
1. Reed, L. J. (1974). Multienzyme complexes. Acc. Chem.
Res. 7, 40-46.
2. Oliver, R. M. & Reed, L. J. (1982). Multienzyme
complexes. In Electron Microscopy of Proteins (Harris, J. R., ed.), Vol.
2, pp. 1-48. Academic Press, London.
3. Perham, R. N. (1991). Domains, motifs, and linkers
in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in
the design of a multifunctional protein. Biochemistry 30, 8501-8512.
4. Wynn, R. M., Davie, J. R., Meng, M. & Chuang,
D. T. (1996). Structure, function and assembly of mammalian branched-chain
a-ketoacid dehydrogenase complex. In Alpha-keto acid dehydrogenase complexes
(Patel, M. S., Roche, T. E. & Harris, eds.), pp. 101-118. Birkhäuser
Verlag, Basel.
5. Berg, A. & de Kok, A. (1997). 2-Oxo acid dehydrogenase
multienzyme complexes. The central role of the lipoyl domain. J.
Biol. Chem. 378, 617-634.
6. Schierbeek, A. J., Swarte, M. B. A., Dijkstra, B.
W., Vriend, G., Read, R. J., Hol, W. G. J., Drenth, J. & Betzel, C.
(1989). X-ray structure of lipoamide dehydrogenase from Azotobacter vinelandii
determined by a combination of molecular and isomorphous replacement techniques.
J. Mol. Biol. 206, 365-379.
7. Mattevi, A., Schierbeek, A. J. & Hol, W. G. J.
(1991). Three-dimensional structure of Azotobacter vinelandii lipoamide
dehydrogenase refined at 2.2 Å resolution. A comparison with
glutathione reductase. J. Mol. Biol. 220, 975-994.
8. Mattevi, A., Obmolova, G., Sokatch, J., Betzel, C.
& Hol, W. G. J. (1992). The refined crystal structure of Pseudomonas
putida lipoamide dehydrogenase complexed with NAD at 2.45 Å resolution.
Proteins 13, 336-351.
9. Mattevi, A., Obmolova, G., Kalk, K. H., van Berkel,
W. J. H. & Hol, W. G. J. (1993). Three-dimensional structure of lipoamide
dehydrogenase from Pseudomonas fluorescens at 2.8 Å resolution: analysis
of redox and thermostability properties. J. Mol. Biol. 230, 1200-1215.
10. Mattevi, A., Obmolova, G., Schulze, G., Kalk, K.
H., Westphal, A., de Kok, A. & Hol, W. G. J. (1992). Atomic structure
of the cubic core of the pyruvate dehydrogenase multienzyme complex. Science
255, 1544-1550.
11. Mattevi, A., Obmolova, G., Kalk, K. H., Teplyakov,
A. & Hol, W. G. J. (1993). Crystallographic analysis of substrate binding
and catalysis in dihydrolipoyl transacetylase (E2p). Biochemistry 32, 3887-3901.
12. Mattevi, A., Obmolova, G., Kalk, K. H., Westphal,
A. H., de Kok, A. & Hol, W. G. J. (1993). Refined crystal structure
of the catalytic domain of dihydrolipoyl transacetylase (E2p) from Azotobacter
vinelandii at 2.6 Å resolution. J. Mol. Biol. 230, 1183-1199.
13. Mande, S. S., Sarfaty, S., Allen, M. D., Perham,
R. N. & Hol, W. G. J. (1996). Protein-protein interactions in the pyruvate
dehydrogenase multienzyme complex: Dihydrolipoamide dehydrogenase
complexed with the binding domain of the dihydrolipoamide acetyltransferase.
Structure 4, 277-286.
14. Hipps, D. S., Packman, L. C., Allen, M. D., Fuller,
C., Sakaguchi, K., Appella, E. & Perham, R. N. (1994). The peripheral
subunit-binding domain of the dihydrolipoyl acetyltransferase component
of the pyruvate dehydrogenase complex of Bacillus stearothermophilus: preparation
and characterization of its binding to the dihydrolipoyl dehydrogenase
component. Biochem. J. 297, 137-143.
15. Izard, T., Ævarsson, A., Allen, M. D., Westphal,
A. H., Perham, R. N., de Kok, A. & Hol, W. G. J. (1999). Principles
of quasi-equivalence and Euclidean geometry govern the assembly of cubic
and dodecahedral cores of pyruvate dehydrogenase complexes. Proc. Natl.
Acad. Sci. USA 96, 1240-1245.
16. Euclid. (1956). The Thirteen Books of Euclid's Elements
(Original ~300BC). Trans. Heath, T.L., Dover, New York.
17. Caspar, D. L. & Klug, A. (1962). Physical principles
in the construction of regular viruses. Cold Spring Harbor Symp. Quant.
Biol. 27, 1-4.
18. Ævarsson, A., Seger, R., Turley, S., Sokatch,
J. R. & Hol, W. G. J. (1999). Crystal structure of 2-oxoisovalerate
dehydrogenase and the architecture of 2-oxo acid dehydrogenase multienzyme
complexes. Nat. Struct. Biol. 6, 785-792.
19. Ævarsson, A., Chuang, J., Wynn, M., Turley,
S., Chuang, D. & Hol, W. G. J. Crystal structure of human branched-chain
a-ketoacid dehydrogenase and the molecular basis of multienzyme complex
deficiency in maple syrup urine disease. Submitted.
20. Tanowitz, H. B., Kirchhoff, L. V., Simon, D., Morris,
S. A., Weiss, L. M. & Wittner, M. (1992). Chagas' disease. Clin. Microbiol.
Rev. 5, 400-419.
21. Kuzoe, F. A. S. (1993). Current situation of African
trypanosomiasis. Acta Trop 54, 153-162.
22. Wang, C. C. (1995). Molecular mechanisms and therapeutic
approaches to the treatment of African trypanosomiasis. Annu. Rev. Pharmacol.
Toxicol. 35, 93-127.
23. Berman, J. D. (1997). Human leishmaniasis:
clinical, diagnostic, and chemotherapeutic developments in the last 10
years. Clin. Infect. Dis. 24, 684-703.
24. Opperdoes, F. R. & Borst, P. (1977). Localization
of nine glycolytic enzymes in a microbody-like organelle inTrypanosoma
brucei: the glycosome. FEBS Lett. 80, 360-364.
25. Opperdoes, F. R. (1987). Compartmentation of carbohydrate
metabolism in trypanosomes. Annu. Rev. Microbiol. 41, 127-151.
26. Verlinde, C. L. M. J., Kim, H., Bernstein, B. E.,
Mande, S. C. & Hol, W. G. J. (1997). Antitrypanosomiasis drug development
based on structures of glycolytic enzymes. In Structure-Based Drug Design
(Veerapandian, P., ed.), pp. 365-394. Marcel Dekker, New York.
27. Bakker, B. M., Michels, P. A., Opperdoes, F. R. &
Westerhoff, H. V. (1999). What controls glycolysis in bloodstream form
Trypanosoma brucei? J. Biol. Chem. 274, 14551-14559.
28. Kohl, L., Drmota, T., Thi, C. D., Callens, M., van
Beeumen, J., Opperdoes, F. R. & Michels, P. A. (1996). Cloning and
characterization of the NAD-linked glycerol-3-phosphate dehydrogenases
of Trypanosoma brucei brucei and Leishmania mexicana mexicana and expression
of the trypanosome enzyme in Escherichia coli. Mol. Biochem. Parasitol.
76, 159-173.
29. Biou, V., Dumas, R., Cohen-Addad, C., Douce, R.,
Job, D. & Pebay-Peyroula, E. (1997). The crystal structure of plant
acetohydroxy acid isomeroreductase complexed with NADPH, two magnesium
ions and a herbicidal transition state analog determined at 1.65 Å
resolution. EMBO J. 16, 3405-3415.
30. Chevalier, N., Callens, M. & Michels, P. A. (1995).
High-level expression of Trypanosoma brucei fructose-1,6-bisphosphate aldolase
in Escherichia coli and purification of the enzyme. Protein Expr. Purif.
6, 39-44.
31. Swinkels, B. W., Gould, S. J., Bodnar, A. G., Rachubinski,
R. A. & Subramani, S. (1991). A novel, cleavable peroxisomal targeting
signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J.
10, 3255-3262.
32. de Hoop, M. J. & Ab, G. (1992). Import of proteins
into peroxisomes and other microbodies. Biochem. J. 286, 657-669.
33. Flynn, C. R., Mullen, R. T. & Trelease, R. N.
(1998). Mutational analyses of a type 2 peroxisomal targeting signal that
is capable of directing oligomeric protein import into tobacco BY-2 glyoxysomes.
Plant J. 16, 709-720.
34. Bernstein, B. E., Michels, P. A. M. & Hol, W.
G. J. (1997). Synergistic effects of substrate-induced conformational changes
in the activation of phosphoglycerate kinase. Nature 385, 275-278.
35. Blake, C. (1997). Phosphotransfer hinges in PGK.
Nature 385, 204-205.
36. Bernstein, B. E. & Hol, W. G. J. (1998). Crystal
structures of substrates and products bound to the phosphoglycerate kinase
active site reveal the catalytic mechanism. Biochemistry 37, 4429-4436.
37. Bernstein, B. E., Williams, D. M., Bressi, J. C.,
Kuhn, P., Gelb, M. H., Blackburn, G. M. & Hol, W. G. J. (1998). A bisubstrate
analog induces unexpected conformational changes in phosphoglycerate kinase
from Trypanosoma brucei. J. Mol. Biol. 279, 1137-1148.
38. Kim, H., Feil, I. K., Verlinde, C. L. M. J., Petra,
P. H. & Hol, W. G. J. (1995). Crystal structure of glycosomal glyceraldehyde-3-phosphate
dehydrogenase from Leishmania mexicana: Implication for structure-based
drug design and a new position for the inorganic phosphate binding site.
Biochemistry 34, 14975-14986.
39. Kim, H. & Hol, W. G. J. (1998). Crystal structure
of Leishmania mexicana glycosomal glyceraldehyde-3-phosphate dehydrogenase
in a new crystal form confirms the putative physiological active site structure.
J. Mol. Biol. 278, 5-11.
40. Aronov, A. M., Verlinde, C. L. M. J., Hol, W. G.
J. & Gelb, M. H. (1998). Selective tight binding inhibitors of trypanosomal
glyceraldehyde-3-phosphate dehydrogenase via structure-based drug design.
J. Med. Chem. 41, 4790-4799.
41. Aronov, A. M., Suresh, S., Buckner, F. S., van Voorhis,
W. C., Verlinde, C. L. M. J., Hol, W. G. J. & Gelb, M. H. (1999). Structure-based
design of sub-micromolar, biologically active inhibitors of trypanosomatid
glyceraldehyde-3-phosphate dehydrogenase. Proc. Natl. Acad. Sci. USA 96,
4273-4278.
42. Oppenheimer, N. J. (1978). Structural determination
and stereospecificity of the choleragen-catalyzed reaction of NAD+ with
guanidines. J. Biol. Chem. 253, 4907-4910.
43. Moss, J., Garrison, S., Oppenheimer, N. J. &
Richardson, S. H. (1979). NAD-dependent ADP-ribosylation of arginine and
proteins by Escherichia coli heat-labile enterotoxin. J. Biol. Chem. 254,
6270-6272.
44. Holmgren, J. (1981). Actions of cholera toxin and
the prevention and treatment of cholera. Nature 292, 413-417.
45. Spangler, B. D. (1992). Structure and function of
cholera toxin and the related Escherichia coli heat-labile enterotoxin.
Microbiol. Rev. 56, 622-647.
46. Nataro, J. P. & Kaper, J. B. (1998). Diarrheagenic
Escherichia coli. Clin. Microbiol. Rev. 11, 142-201.
47. World Health Organization. (1999). New frontiers
in the development of vaccines against ETEC and EHEC. Part I. Weekly
Epid. Rec. 13, 97-101.
48. van den Akker, F., Merritt, E. A., Pizza, M., Domenighini,
M., Rappuoli, R. & Hol, W. G. J. (1995). The Arg7Lys mutant of heat-labile
enterotoxin exhibits great flexibility of active site loop 47-56 of the
A subunit. Biochemistry 34, 10996-11004.
49. Mekalanos, J. J., Collier, R. J. & Romig, W.
R. (1979). Enzymic activity of cholera toxin. II. Relationships to proteolytic
processing, disulfide bond reduction, and subunit composition. J. Biol.
Chem. 254, 5855-5861.
50. Tomasi, M., Battistini, A., Araco, A., Roda, L. G.
& D'Agnolo, G. (1979). The role of the reactive disulfide bond in the
interaction of cholera-toxin functional regions. Eur. J. Biochem. 93, 621-627.
51. Sixma, T. K., Pronk, S. E., Kalk, K. H., Wartna,
E. S., van Zanten, B. A. M., Witholt, B. & Hol, W. G. J. (1991). Crystal
structure of a cholera toxin-related heat-labile enterotoxin from E. coli.
Nature 351, 371-377.
52. Sixma, T. K., Kalk, K. H., van Zanter, B. A. M.,
Dauter, Z., Kingma, J., Witholt, B. & Hol, W. G. J. (1993). Refined
structure of Escherichia coli heat-labile enterotoxin, a close relative
of cholera toxin. J. Mol. Biol. 230, 890-918.
53. Merritt, E. A., Sarfaty, S., van den Akker, F., L'hoir,
C., Martial, J. A. & Hol, W. G. J. (1994). Crystal structure of cholera
toxin pentamer bound to receptor GM1 pentasaccharide. Protein Science 3,
166-175.
54. Merritt, E. A. & Hol, W. G. J. (1995). AB5 Toxins.
Curr. Opin. in Struct. Biol. 5, 165-171.
55. Zhang, R. G., Scott, D. L., Westbrook, M. L., Nance,
S., Spangler, B. D., Shipley, G. G. & Westbrook, E. M. (1995). The
three-dimensional crystal structure of cholera toxin. J. Mol. Biol. 251,
563-573.
56. Merritt, E. A., Sarfaty, S., Feil, I. K. & Hol,
W. G. J. (1997). Structural foundation for the design of receptor antagonists
targeting E. coli heat-labile enterotoxin. Structure 5, 1485-1499.
57. van den Akker, F., Merritt, E. A. & Hol, W. G.
J. (1999). Structure and function of cholera toxin and related enterotoxins.
In Handbook of Experimental Pharmacology (Aktories, K., ed.), Vol. 145,
in press. Springer-Verlag, Berlin.
58. van den Akker, F., Sarfaty, S., Twiddy, E. M., Connell,
T. D., Holmes, R. K. & Hol, W. G. J. (1996). Crystal structure of a
new heat-labile enterotoxin, LT-IIb. Structure 4, 665-678.
59. Hovey, B., Verlinde, C. L. M. J., Merritt, E. A.
& Hol, W. G. J. (1999). Structure-based discovery of a pore-binding
ligand: Towards assembly inhibitors for cholera and related AB5 toxins.
J. Mol. Biol. 285, 1169-1178.
60. Merritt, E. A., Kuhn, P., Sarfaty, S., Erbe, J. L.,
Holmes, R. K. & Hol, W. G. J. (1998). 1.25 Å resolution refinement
of the cholera toxin B-pentamer: evidence of peptide backbone strain
at the receptor-binding site. J. Mol. Biol. 282, 1043-1059.
61. Minke, W. E., Roach, C., Hol, W. G. J. & Verlinde,
C. L. M. J. (1999). Structure-based exploration of the ganglioside GM1
binding sites of E. coli heat-labile enterotoxin and cholera toxin for
the discovery of receptor antagonists. Biochemistry 38, 5684-5692.
62. Sixma, T. K., Pronk, S. E., Kalk, K. H., van Zanten,
B. A. M., Berghuis, A. M. & Hol, W. G. J. (1992). Lactose binding to
heat-labile enterotoxin revealed by x-ray crystallography. Nature 355,
561-564.
63. van den Akker, F., Steensma, E. & Hol, W. G.
J. (1996). Tumor marker disaccharide D-Gal-b1,3-GalNAc complexed to heat-labile
enterotoxin from Escherichia coli. Protein Science 5, 1184-1188.
64. Minke, W. E., Diller, D. J., Hol, W. G. J. &
Verlinde, C. L. M. J. (1999). The role of waters in flexible docking strategies
for carbohydrate derivatives: heat-labile enterotoxin, a multivalent
test case. J. Med. Chem. 42, 1778-1788.
65. Minke, W. E., Hong, F., Verlinde, C. L. M. J., Hol,
W. G. J. & Fan, E. (1999). Using a galactose library for exploration
of a novel hydrophobic pocket in the receptor binding site of the E. coli
heat-labile enterotoxin. J. Biol. Chem. in press.
66. Gupta, M., Fujimori, A. & Pommier, Y. (1995).
Eukaryotic DNA topoisomerases I. Biochim. Biophys. Acta 1262, 1-14.
67. Wang, J. C. (1996). DNA Topoisomerases. Annu. Rev.
Biochem. 65, 635-692.
68. Redinbo, M. R., Champoux, J. J. & Hol, W. G.
J. (1999). Structural insights into the function of type IB topoisomerases.
Curr. Opin. Struct. Biol. 9, 29-36.
69. Champoux, J. J. (1998). Domains of human topoisomerase
I and associated functions. Prog. Nucleic Acid Res. Mol. Biol. 60, 111-132.
70. Redinbo, M. R., Stewart, L., Kuhn, P., Champoux,
J. J. & Hol, W. G. J. (1998). Crystal structures of human topoisomerase
I in covalent and noncovalent complexes with DNA. Science 279, 1504-1513.
71. Stewart, L., Redinbo, M. R., Qiu, X., Hol, W. G.
J. & Champoux, J. J. (1998). A model for the mechanism of human topoisomerase
I. Science 279, 1534-1541.
72. Redinbo, M. R., Stewart, L., Champoux, J. J. &
Hol, W. G. J. (1999). Structural flexibility in human topoisomerase I revealed
in multiple non-isomorphous crystal structures. J. Mol. Biol. in press.
73. Armand, J. P., Ducreux, M., Mahjoubi, M., Abigerges,
D., Bugat, R., Chabot, G., Herait, P., de Forni, M. & Rougier, P. (1995).
CPT-11 (irinotecan) in the treatment of colorectal cancer. Eur. J. Cancer
31A, 1283-1287.
74. O'Reilly, S. & Rowinsky, E. K. (1996). The clinical
status of irinotecan (CPT-11), a novel water soluble camptothecin analogue.
Crit. Rev. Oncol. Hematol. 24, 47-70.
75. Dancey, J. & Eisenhauer, E. A. (1996). Current
perspectives on camptothecins in cancer treatment. Brit. J. Cancer 74,
327-338.
76. Fan, Y., Weinstein, J. N., Kohn, K. W., Shi, L. M.
& Pommier, Y. (1998). Molecular modeling studies of the DNA-topoisomerase
I ternary cleavable complex with camptothecin. J. Med. Chem. 41, 2216-2226.
77. Murray, C. J. & Salomon, J. A. (1998). Modeling
the impact of global tuberculosis control strategies. Proc. Natl. Acad.
Sci. USA 95, 13881-13886.
78. Albino, J. A. & Reichmann, L. B. (1997). Multidrug
resistant tuberculosis. Curr. Opin. Inf. Dis. 10, 116-122.
79. Preheim, L. C. & Smith, T. L. (1997). Mycobacterial
infections: New threats from old disease. Compr. Ther. 23, 310-318.
80. World Health Organization. (1998). Antituberculosis
drug resistance worldwide. Weekly Epid. Record 73, 249-254.
81. Mande, S., C., Mehra, F., Bloom, B. R. & Hol,
W. G. J. (1996). Structure of the heat shock protein chaperonin-10 of Mycobacterium
leprae. Science 271, 203-207.
82. Hunt, J. F., Weaver, A. J., Landry, S. J., Gierasch,
L. & Deisenhofer, J. (1996). The crystal structure of the GroES co-chaperonin
at 2.8 Å resolution. Nature 379, 37-45.
83. Xu, Z., Horwich, A. L. & Sigler, P. B. (1997).
The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex.
Nature 388, 741-750.
84. Pohl, E., Holmes, R. K. & Hol, W. G. J. (1999).
Crystal structure of the iron dependent repressor (IdeR) from Mycobacterium
tuberculosis shows both metal binding sites fully occupied. J. Mol. Biol.
285, 1145-1156.
85. Schmitt, M. P., Predich, M., Doukhan, L., Smith,
I. & Holmes, R. K. (1995). Characterization of an iron-dependent regulatory
protein (IdeR) of Mycobacterium tuberculosis as a functional homolog of
the diphtheria toxin repressor (DtxR) from Corynebacterium diphtheriae.
Infect. Immun. 63, 4284-4289.
86. Qiu, X., Verlinde, C. L. M. J., Zhang, S., Schmitt,
M. P., Holmes, R. K. & Hol, W. G. J. (1995). Three-dimensional structure
of the diphtheria toxin repressor in complex with divalent cation co-repressors.
Structure 3, 87-100.
87. Qiu, X., Pohl, E., Holmes, R. K. & Hol, W. G.
J. (1996). High resolution structure of the diphtheria toxin repressor
complexed with cobalt and manganese reveals an SH3-like third domain and
suggests a possible role of phosphate as co-corepressor. Biochemistry 35,
12292-12302.
88. Pohl, E., Qiu, X., Must, L. M., Holmes, R. K. &
Hol, W. G. J. (1997). Comparison of high-resolution structures of the diphtheria
toxin repressor in complex with cobalt and zinc at the cation-anion binding
site. Protein Science 6, 1114-1118.
89. Pohl, E., Holmes, R. K. & Hol, W. G. J. (1998).
Motion of the DNA-binding domain with respect to the core of the diphtheria
toxin repressor revealed in the crystal structures of apo- and holo-DtxR.
J. Biol. Chem. 273, 22420-22427.
90. Schiering, N., Tao, X., Zeng, H., Murphy, J. R.,
Petsko, G. A. & Ringe, D. (1995). Structures of the apo- and the metal
ion-activated forms of the diphtheria tox repressor from Corynebacterium
diphtheriae. Proc. Natl. Acad. Sci. USA 92, 9843-9850.
91. Ding, X., Zeng, H., Schiering, N., Ringe, D. &
Murphy, J. R. (1996). Identification of the primary metal ion-activation
sites of the diphtheria tox repressor by X-ray crystallography and site-directed
mutational analysis. Nat. Struct. Biol. 3, 382-387.
92. Wang, G., Wylie, G. P., Twigg, P. D., Caspar, D.
L. D., Murphy, J. R. & Logan, T. M. (1999). Solution structure and
peptide binding studies of the C-terminal Src homology 3-like domain of
the diphtheria toxin repressor protein. Proc. Natl. Acad. Sci. USA 96,
6119-6124.
93. White, A., Ding, X., van der Spek, J., Murphy, J.
R. & Ringe, D. (1998). Structure of the metal-ion-activated diphtheria
toxin repressor/tox operator complex. Nature 394, 502-507.
94. Pohl, E., Holmes, R. K. & Hol, W. G. J. (1999).
Crystal structure of a cobalt-activated diphtheria toxin repressor-DNA
complex reveals a metal-binding SH3-like domain. J. Mol. Biol. in press.
95. Schweitzer, B. I., Dicker, A. P. & Bertino, J.
R. (1990). Dihydrofolate reductase as a therapeutic target. FASEB J 4,
2441-52.
96. Kuyper, L. F., Baccanari, D. P., Jones, M. L., Hunter,
R. N., Tansik, R. L., Joyner, S. S., Boytos, C. M., Rudolph, S. K., Knick,
V., Wilson, H. R., Caddell, J. M., Friedman, H. S., Comley, J. C. &
Stables, J. N. (1996). High-affinity inhibitors of dihydrofolate reductase:
antimicrobial and anticancer activities of 7,8-dialkyl-1,3-diaminopyrrolo[3,2-
f]quinazolines with small molecular size. J Med Chem 39, 892-903.
97. Kuyper, L. F., Garvey, J. M., Baccanari, D. P., Champness,
J. N., Stammers, D. K. & Beddell, C. R. (1996). Pyrrolo[2,3-d]pyrimidines
and pyrido[2,3-d]pyrimidines as conformationally restricted analogues of
the antibacterial agent trimethoprim. Bioorg Med Chem 4, 593-602.
98. Li, R., Sirawaraporn, P., Chitnumsub, P., Sirawaraporn,
W. & Hol, W. G. J. (1999). Three-dimensional structure of M. tuberculosisi
dihydrofolate reductase reveals opportunities for the design of novel tuberculosis
drugs. Submitted.
99. Hitchings, G. H. & Burchall, J. J. (1965). Inhibition
of folate biosynthesis and function as a basis for chemotherapy. Adv. Enzymol.
27, 417-468.
100. Seydel, J. K. (1968). Sulfonamides, structure-activity
relationship, and mode of action. Structural problems of the antibacterial
action of 4-aminobenzoic acid (PABA) antagonists. J. Pharm. Sci. 57, 1455-1478.
101. Roland, S., Ferone, R., Harvey, R. J., Styles, V.
L. & Morrison, R. W. (1979). The characteristics and significance of
sulfonamides as substrates for Escherichia coli dihydropteroate synthase.
J. Biol. Chem. 254, 10337-10345.
102. Achari, A., Somers, D. O., Champness, J. N., Bryant,
P. K., Rosemond, J. & Stammer, D. K. (1997). Crystal structure of the
anti-bacterial sulfonamide drug target dihydropteroate synthase. Nat. Struct.
Biol. 4, 490-497.
103. Hampele, I. C., D'Arcy, A., Dale, G. E., Kostrewa,
D., Nielsen, J., Oefner, C., Page, M. G., Schonfeld, H. J., Stuber, D.
& Then, R. L. (1997). Structure and function of the dihydropteroate
synthase from Staphylococcus aureus. J. Mol. Biol. 268, 21-30.
104. van den Akker, F. & Hol, W. G. J. (1999). Model
error assessment from difference density maps. A novel method to
assess the global and local correctness of macro-molecular crystal structures.
Acta Cryst. D55, 206-218.
105. Yeh, J. I. & Hol, W. G. J. (1998). A flash annealing
technique to improve diffraction limits and lower mosaicity in crystals
of glycerol kinase. Acta Cryst. D54, 479-480.
106. Diller, D. J., Pohl, E., Redinbo, M. R., Hovey,
B. & Hol, W. G. J. (1999). A rapid method for positioning small flexible
molecules, nucleic acids, and large protein fragments in experimental electron
density maps. Proteins in press.
107. Diller, D. J., Pohl, E., Redinbo, M. R., Hovey,
B. & Hol, W. G. J. (1999). A database method for automated map interpretation
in protein crystallography. Proteins in press.
108. Diller, D. J. & Hol, W. G. J. (1999). An accurate
numerical model for calculating the equilibration rate of a hanging drop
experiment. Acta Cryst. D55, 656-663.
109. Rudenko, G., Bonten, E., d'Azzo, A. & Hol, W.
G. J. (1996). Structure determination of human protective protein:
Two fold averaging reveals the three-dimensional structure of a domain
which was entirely absent in the initial model. Acta Cryst. D52, 923-936.
110. Bernstein, B. E. & Hol, W. G. J. (1997). Probing
the limits of the molecular replacement method: The case of Trypanosoma
brucei phosphoglycerate kinase. Acta Cryst. D53, 756-764.